Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(4): 2750-2762, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38174956

RESUMO

The predictive design of flexible and solvent-free polymer electrolytes for solid-state batteries requires an understanding of the fundamental principles governing the ion transport. In this work, we establish a correlation among the composite structures, polymer segmental dynamics, and lithium ion (Li+) transport in a ceramic-polymer composite. Elucidating this structure-property relationship will allow tailoring of the Li+ conductivity by optimizing the macroscopic electrochemical stability of the electrolyte. The ion dissociation from the slow polymer segmental dynamics was found to be enhanced by controlling the morphology and functionality of the polymer/ceramic interface. The chemical structure of the Li+ salt in the composite electrolyte was correlated with the size of the ionic cluster domains, the conductivity mechanism, and the electrochemical stability of the electrolyte. Polyethylene oxide (PEO) filled with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) or lithium bis(fluorosulfonyl) imide (LiFSI) salts was used as a matrix. A garnet electrolyte, aluminum substituted lithium lanthanum zirconium oxide (Al-LLZO) with a planar geometry, was used for the ceramic nanoparticle moieties. The dynamics of the strongly bound and highly mobile Li+ were investigated using dielectric relaxation spectroscopy. The incorporation of the Al-LLZO platelets increased the number density of more mobile Li+. The structure of the nanoscale ion-agglomeration was investigated by small-angle X-ray scattering, while molecular dynamics (MD) simulation studies were conducted to obtain the fundamental mechanism of the decorrelation of the Li+ in the LiTFSI and LiFSI salts from the long PEO chain.

2.
ChemSusChem ; 16(16): e202300350, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37198136

RESUMO

Lithium-ion battery cathode materials suffer from bulk and interfacial degradation issues, which negatively affect their electrochemical performance. Oxide coatings can mitigate some of these problems and improve electrochemical performance. However, current coating strategies have low throughput, are expensive, and have limited applicability. In this article, we describe a low-cost and scalable strategy for applying oxide coatings on cathode materials. We report synergistic effects of these oxide coatings on the performance of aqueously processed cathodes in cells. The SiO2 coating strategy developed herein improved mechanical, chemical, and electrochemical performance of aqueously processed Ni-, Mn- and Co-based cathodes. This strategy can be used on a variety of cathodes to improve the performance of aqueously processed Li-ion cells.

3.
RSC Adv ; 12(24): 15373-15377, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35693244

RESUMO

Thermal insulation materials are highly desirable for several applications ranging from building envelopes to thermal energy storage systems. A new type of low-cost insulation material called hollow silica particles (HSPs) was recently reported. The present work presents an HSP-based stand-alone composite that has very low thermal conductivity and is highly stable to moisture.

4.
Nanomaterials (Basel) ; 11(6)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205769

RESUMO

Thermal insulation materials are highly sought after for applications such as building envelopes, refrigerators, cryogenic fuel storage chambers, and water supply piping. However, current insulation materials either do not provide sufficient insulation or are costly. A new class of insulation materials, hollow silica particles, has attracted tremendous attention due to its potential to provide a very high degree of thermal insulation. However, current synthesis strategies provide hollow silica particles at very low yields and at high cost, thus, making the particles unsuitable for real-world applications. In the present work, a synthesis process that produces hollow silica particles at very high yields and at a lower cost is presented. The effect of an infrared heat absorber, carbon black, on the thermal conductivity of hollow silica particles is also investigated and it is inferred that a carbon black-hollow silica particle mixture can be a better insulating material than hollow silica particles alone.

5.
Nanomaterials (Basel) ; 10(9)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867130

RESUMO

The mechanical and thermal conductivity properties of two composite elastomers were studied. Styrene-butadiene rubber (SBR) filled with functionalized graphene oxide (GO) and silica nanofibers, and styrene-butadiene-styrene (SBS) block copolymers filled with graphene oxide. For the SBR composites, GO fillers with two different surface functionalities were synthesized (cysteamine and dodecylamine) and dispersed in the SBR using mechanical and liquid mixing techniques. The hydrophilic cysteamine-based GO fillers were dispersed in the SBR by mechanical mixing, whereas the hydrophobic dodecylamine-based GO fillers were dispersed in the SBR by liquid mixing. Silica nanofibers (SnFs) were fabricated by electrospinning a sol-gel precursor solution. The surface chemistry of the functionalized fillers was studied in detail. The properties of the composites and the synergistic improvements between the GO and SnFs are presented. For the SBS composites, GO fillers were dispersed in the SBS elastomer at several weight percent loadings using liquid mixing. Characterization of the filler material and the composite elastomers was performed using x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, dynamic mechanical analysis, tensile testing, nanoindentation, thermal conductivity and abrasion testing.

6.
Nanomaterials (Basel) ; 10(8)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823994

RESUMO

Hollow silica particles (or mesoporous hollow silica particles) are sought after for applications across several fields, including drug delivery, battery anodes, catalysis, thermal insulation, and functional coatings. Significant progress has been made in hollow silica particle synthesis and several new methods are being explored to use these particles in real-world applications. This review article presents a brief and critical discussion of synthesis strategies, characterization techniques, and current and possible future applications of these particles.

7.
RSC Adv ; 10(38): 22331-22334, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35514583

RESUMO

In the past decade, interest in hollow silica particles has grown tremendously because of their applications in diverse fields such as thermal insulation, drug delivery, battery cathodes, catalysis, and functional coatings. Herein, we demonstrate a strategy to synthesize hybrid hollow silica particles having shells made of either polymer-silica or carbon-silica. Hybrid shells were characterized using electron microscopy. The effect of hybrid shell type on particle properties such as thermal and moisture absorption was also investigated.

8.
RSC Adv ; 10(52): 31065-31069, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-35520683

RESUMO

Hydrophobic hollow silica particles are desirable for several applications such as hydrophobic coatings, thermal insulation, and thermally resistant insulative paints. However, converting hydrophilic particles into hydrophobic particles without compromising their structural integrity is challenging. In this work, we present a low cost strategy to modify the surface of hollow silica particles from hydrophilic to hydrophobic without compromising their structural integrity.

9.
RSC Adv ; 9(9): 4857-4861, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35514642

RESUMO

The purification of conductive polymer (e.g., polyaniline) particles is a challenging task, especially when the particle size is small. Herein, we demonstrate a unique strategy (electrode-based) to purify polyaniline particles by exploiting the difference in surface charge between particles and surfactants, and compare the results with a commonly used purification strategy (washing).

10.
Nanoscale Adv ; 1(3): 1249-1260, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36133208

RESUMO

The anti-soiling (AS) performance of highly reflective, superhydrophilic (SPH, 0° water contact angle) coated mirrors was characterized and compared with that of superhydrophobic (SP, >165° water contact angle) coated mirrors. A simple one-step nanotextured silica nanoparticle coating on a mirror exhibited SPH properties associated with hydrophilic rough surfaces. Another mirror surface post-functionalized with low-surface-energy ligand molecules displayed SP behavior. Both coated mirrors, with no solar reflectance loss, demonstrated excellent AS performance because the engineered surface roughness reduced the adhesive force of dust particles. The daily degradation in solar reflectance induced by dust accumulation under outdoor field testing demonstrated that the SPH- and SP-coated mirrors, compared with an uncoated mirror, maintained higher solar reflectance, which was associated with the designed self-cleaning behavior and natural cleaning. However, over the long term, dust-moisture cementation-evidenced by organic hard water stains on the mirror-initiated unrecoverable reflectance loss on the SP-coated mirror after 3 months, whereas the SPH-coated mirror maintained higher reflectance for 7.5 months. Considering fabrication costs and maintenance, SPH-coated nanotextured mirrors offer potential benefits for application in solar energy harvesting.

11.
Nanoscale Adv ; 1(9): 3392-3399, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36133556

RESUMO

Tip-enhanced Raman spectroscopy (TERS) has been established as one the most efficient analytical techniques for probing vibrational states with nanoscale resolution. While TERS may be a source of unique information about chemical structure and interactions, it has a limited use for materials with rough or sticky surfaces. Development of the TERS approach utilizing a non-contact scanning probe microscopy mode can significantly extend the number of applications. Here we demonstrate a proof of the concept and feasibility of a non-contact TERS approach and test it on various materials. Our experiments show that non-contact TERS can provide 10 nm spatial resolution and a Raman signal enhancement factor of 105, making it very promising for chemical imaging of materials with high aspect ratio surface patterns and biomaterials.

12.
Nanoscale ; 10(30): 14600-14612, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30028465

RESUMO

The anti-soiling (AS) performance of solar mirrors coated with a highly transparent, superhydrophobic nanoparticle-textured coating has been characterized. The AS coatings were created on the mirror surface by depositing nano-textured silica nanoparticle layers of ∼250 nm thickness using a draw-down coating process, followed by fluorination of the nanoparticles in a molecular vapor deposition process. Highly uniform surface features of the AS-coated mirrors (20 × 30 cm2, no measurable loss in specular reflectance, and water contact angle >165°) provided an outstanding AS performance. A 4× reduction in the rate of dust accumulation as determined by gravimetric measurement of the accumulated dust on coated versus uncoated mirrors was observed. Additional evidence of a significant reduction in soiling rate was determined during measurements of specular reflectance in an outdoor environment test. The adhesion force between a model sand particle and nano-textured coatings in the hydrophobic to superhydrophobic range was also studied. A dramatic decrease in adhesive force acting on the particle was observed with increasing surface hydrophobicity. The results align well with the observed dust accumulation on the AS-coated mirrors. The AS-coated mirror maintains a high reflectivity by shedding dust and resisting dust accumulation, providing a potential benefit when applied to mirrors in the solar field of a concentrated solar power generation plant.

13.
Nanotechnology ; 28(28): 285601, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28555610

RESUMO

Polymer residue plays an important role in the performance of 2D heterostructured materials. Herein, we study the effect of polymer residual impurities on the electrical properties of graphene-boron nitride planar heterostructures. Large-area graphene (Gr) and hexagonal boron nitride (h-BN) monolayers were synthesized using chemical vapor deposition techniques. Atomic van-der-Waals heterostructure layers based on varied configurations of Gr and h-BN layers were assembled. The average interlayer resistance of the heterojunctions over a 1 cm2 area for several planar heterostructure configurations was assessed by impedance spectroscopy and modeled by equivalent electrical circuits. Conductive AFM measurements showed that the presence of polymer residues on the surface of the Gr and h-BN monolayers resulted in significant resistance deviations over nanoscale regions.

14.
Chemistry ; 22(52): 18700-18704, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-27785846

RESUMO

Shape control of silica structures is demonstrated by localization of the reagents. A uniform dispersion of reagents provided straight silica rods, whereas localization of the reagents in the emulsion droplet periphery provided a new type of half-sphere/half-funnel structure. The effect of water concentration appeared to be related to the ease of diffusion of the silica precursor inside the emulsion droplet (i.e., the higher the water concentration, the lower the silica precursor diffusion).

15.
ACS Appl Mater Interfaces ; 7(20): 10702-9, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25919004

RESUMO

Graphene is an ideal candidate for lightweight, high-strength composite materials given its superior mechanical properties (specific strength of 130 GPa and stiffness of 1 TPa). To date, easily scalable graphene-like materials in a form of separated flakes (exfoliated graphene, graphene oxide, and reduced graphene oxide) have been investigated as candidates for large-scale applications such as material reinforcement. These graphene-like materials do not fully exhibit all the capabilities of graphene in composite materials. In the current study, we show that macro (2 inch × 2 inch) graphene laminates and fibers can be produced using large continuous sheets of single-layer graphene grown by chemical vapor deposition. The resulting composite structures have potential to outperform the current state-of-the-art composite materials in both mechanical properties and electrical conductivities (>8 S/cm with only 0.13% volumetric graphene loading and 5 × 10(3) S/cm for pure graphene fibers) with estimated graphene contributions of >10 GPa in strength and 1 TPa in stiffness.

16.
Langmuir ; 31(14): 4224-31, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25790280

RESUMO

Air-stable droplet interface bilayers (airDIBs) on oil-infused surfaces are versatile model membranes for synthetic biology applications, including biosensing of airborne species. However, airDIBs are subject to evaporation, which can, over time, destabilize them and reduce their useful lifetime compared to traditional DIBs that are fully submerged in oil. Here, we show that the lifetimes of airDIBs can be extended by as much as an order of magnitude by maintaining the temperature just above the dew point. We find that raising the temperature from near the dew point (which was 7 °C at 38.5% relative humidity and 22 °C air temperature) to 20 °C results in the loss of hydrated water molecules from the polar headgroups of the lipid bilayer membrane due to evaporation, resulting in a phase transition with increased disorder. This dehydration transition primarily affects the bilayer electrical resistance by increasing the permeability through an increasingly disordered polar headgroup region of the bilayer. Temperature and relative humidity are conveniently tunable parameters for controlling the stability and composition of airDIB membranes while still allowing for operation in ambient environments.


Assuntos
Ar , Permeabilidade da Membrana Celular , Bicamadas Lipídicas/química , Capacitância Elétrica , Impedância Elétrica , Membranas Artificiais , Nanoestruturas/química , Óleos/química , Pressão Osmótica , Propriedades de Superfície , Temperatura de Transição , Volatilização
17.
Nanotechnology ; 26(5): 055602, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25573924

RESUMO

Optical surfaces such as mirrors and windows that are exposed to outdoor environmental conditions are susceptible to dust buildup and water condensation. The application of transparent superhydrophobic coatings on optical surfaces can improve outdoor performance via a 'self-cleaning' effect similar to the Lotus effect. The contact angle (CA) of water droplets on a typical hydrophobic flat surface varies from 100° to 120°. Adding roughness or microtexture to a hydrophobic surface leads to an enhancement of hydrophobicity and the CA can be increased to a value in the range of 160°-175°. This result is remarkable because such behavior cannot be explained using surface chemistry alone. When surface features are on the order of 100 nm or smaller, they exhibit superhydrophobic behavior and maintain their optical transparency. In this work we discuss our results on transparent superhydrophobic coatings that can be applied across large surface areas. We have used functionalized silica nanoparticles to coat various optical elements and have measured the CA and optical transmission between 190 and 1100 nm on these elements. The functionalized silica nanoparticles were dissolved in a solution of the solvents, while the binder used was a polyurethane clearcoat. This solution was spin-coated onto a variety of test glass substrates, and following a curing period of about 30 min, these coatings exhibited superhydrophobic behavior with a static CA ≥ 160°.

18.
Proc Natl Acad Sci U S A ; 111(21): 7588-93, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24821774

RESUMO

Droplet interface bilayers are versatile model membranes useful for synthetic biology and biosensing; however, to date they have always been confined to fluid reservoirs. Here, we demonstrate that when two or more water droplets collide on an oil-infused substrate, they exhibit noncoalescence due to the formation of a thin oil film that gets squeezed between the droplets from the bottom up. We show that when phospholipids are included in the water droplets, a stable droplet interface bilayer forms between the noncoalescing water droplets. As with traditional oil-submerged droplet interface bilayers, we were able to characterize ion channel transport by incorporating peptides into each droplet. Our findings reveal that droplet interface bilayers can function in ambient environments, which could potentially enable biosensing of airborne matter.


Assuntos
Técnicas Biossensoriais/métodos , Interações Hidrofóbicas e Hidrofílicas , Canais Iônicos/metabolismo , Bicamadas Lipídicas/química , Água/química , Transporte Biológico/fisiologia
19.
J Phys Chem B ; 117(43): 13667-78, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24083909

RESUMO

Alkylammonium surfactants were nanoscopically confined between montmorillonite layers of varied negative surface charge, i.e., of varied cation exchange capacities. Dielectric relaxation spectroscopy was employed to probe the interfacial dynamics, arising from the mobility of the cations on the silicate surfaces, as a function of the confining walls' surface charge. Standard methods to dry the organo-silicates were employed; however, water was still detected physisorbed in the galleries; the dynamics of these water molecules were also detected and were found to be coupled with the dynamics of the ammoniums at high temperatures. A transition in the mobility of the cations, approximately at 75 °C (which is in good agreement with the conformational changes of the alkyl groups, reported in the literature), is observed, and a model is proposed on the basis of the dynamics of the confined water. Entropic contributions arising from variation in the surface charge density are also discussed in detail. The existence of water in the interlayer--in spite of drying the nanofillers in accordance to industrial practices--and the interrelated surfactant/water dynamics bring forward important implications for the design and processing of polymer-based nanocomposites based on these fillers.

20.
Langmuir ; 27(6): 2953-7, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21294505

RESUMO

Superhydrophobic surfaces based on polydimethyl siloxane (PDMS) were fabricated using a 50:50 PDMS-poly(ethylene glycol) (PEG) blend. PDMS was mixed with PEG, and incomplete phase separation yielded a hierarchic structure. The phase-separated mixture was annealed at a temperature close to the crystallization temperature of the PEG. The PEG crystals were formed isothermally at the PDMS/PEG interface, leading to an engineered surface with PDMS spherulites. The resulting roughness of the surface was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The PDMS spherulites, a few micrometers in diameter observed from SEM images, were found to have an undulated (rippled) surface with nanometer-sized features. The combination of micrometer- and nanometer-sized surface features created a fractal surface and increased the water contact angle (WCA) of PDMS more than 60°, resulting in a superhydrophobic PDMS surface with WCA of >160°. The active surface layer for the superhydrophobicity was approximately 100 µm thick, illustrating that the material had bulk superhydrophobicity compared to conventional fluorocarbon or fluorinated coated rough surfaces. Theoretical analysis of the fractal surface indicates that the constructed surface has a fractal dimension of 2.5, which corresponds to the Apollonian sphere packing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...